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Abstract: Neuromorphic pattern classifiers were 

implemented, for the first time, using transistor-free 

integrated crossbar circuits with bilayer metal-oxide 

memristors. 10×6- and 10×8-crosspoint neuromorphic 

networks were trained in-situ using a Manhattan-Rule 

algorithm to separate a set of 3×3 binary images: into 3 

classes using the batch-mode training, and into 4 classes 

using the stochastic-mode training, respectively. Simulation 

of much larger, multilayer neural network classifiers based 

on such technology has shown that their fidelity may be on 

a par with the state-of-the-art results. 
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Introduction 
Deep-learning convolutional neural networks (DLCNN), 

which are essentially multilayer perceptrons (MLP) with 

restricted connectivity between some layers (Fig. 1a), have 

been demonstrated to achieve some of the best 

classification performances on a variety of benchmark tasks 

[1]. The major challenge in building fast and energy-

efficient networks of this type in hardware is performing 

efficient vector-by-matrix multiplication, which in turn 

requires compact implementation of synaptic weights [2].  

CrossNet circuits have emerged as an efficient solution to 

these challenges [2]. In such a network, neural cell bodies 

are mimicked with analog CMOS circuits, which 

communicate via passive crossbars with integrated tunable 

resistive devices (“memristors”) [3-6], playing the role of 

synapses [7-12] (Figs. 1b-e). Main goals of this work were 

to demonstrate the first neural networks with integrated 

crossbar circuits, and evaluate possible performance of 

larger classifiers based on this emerging technology. 

Experimental Results 
A 12×12 crossbar with 200-nm lines separated by 400-nm 

gaps (Fig. 2a), with a Pt/Al2O3/TiO2-x/Ti/Pt memristor at 

each crosspoint, was fabricated using a standard lift-off 

patterning. The Al2O3/TiO2-x stack was deposited by 

reactive sputtering, with titanium oxide stoichiometry 

controlled precisely via the oxygen flow control. The 

thickness and stoichiometry were optimized to achieve low 

forming voltages (<2 V) and highly nonlinear I-V curves 

with a ~10 ratio of current values at the switching voltage 

(~1.5 V) and at a half of it (Fig. 2b). The most outstanding 

feature of such memristors is their low variability (Fig. 2c); 

together with nonlinear I-V and low forming voltages it has 

enabled forming of most of the devices in crossbar array. 

Other important characteristics are the ~100 ON/OFF 

current ratio at ~0.1 V, a switching endurance of at least 

5,000 cycles, an estimated retention of at least 10 years at 

room temperature, and operation currents between ~100 nA 

and ~100 μA [9, 10]. Using short (e.g., 500 μS) pulses 

makes both set and reset switching processes fairly 

continuous, enabling gradual tuning of device conductance 

with an at least 5-bit precision [10] even  using a very 

simple (suboptimal) feedback algorithm [11]. Such 

precision is already acceptable for some neural network 

applications [2, 12]. 

During classifier's operation (Figs. 1e, 3a, 4a), the vector-

by-matrix multiplication of the input signals (represented 

with voltages) by  weights (represented by memristor 

conductances) is performed on the physical level, in analog 

domain, using Ohm’s and Kirchhoff’s laws, by applying 

the input voltages to crossbar's row lines and reading out 

the currents flowing into virtually grounded column lines 

(Fig. 1e, 4a). The training was performed in-situ in both the 

batch and stochastic modes, using the Manhattan-Rule 

algorithm (Fig. 3) [13]. This rule is convenient for crossbar 
 

CMOS neurons

crossbar 
nanowire synapses(a)

CMOS 

circuits

crossbar 

with 

memristive 

devices

differential pair:

A A A A

VR

(b) (c) (d) (e)
  ijijij GGW

x1

x2
y

W1

2

neuron
synapses

W

CMOS neuron

f∞y

memristor 
synapses

V=RI

R

G∞W

I=∑jGijVj

V ∞ x

 

Figure 1. Neuromorphic network implementation with CrossNet circuits [2]: (a) A graph representation of a multilayer perceptron; 

(b) a cartoon of a hybrid CMOS/memristor (CMOL) integrated circuit; (c) analog implementation of the dot-product, (f) its mapping 
on the hybrid circuit, and (e) the implementation of vector-by-matrix multiplication using a memristive crossbar. (It shows that if 
negative weight values are required, a synapse may be implemented as a pair of memristors.) 
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circuit implementation, due to the use of only the sign 

information of the conventional Delta-Rule algorithm's 

result. The advantage of stochastic training is that the 

weight update for the whole crossbar (of any size) may be 

performed in just four steps by applying pulses in parallel 

to rows and columns of the crossbar (Fig. 4b) [12]. 

Namely, the weights are grouped into four sets, each 

corresponding to a particular combinations of signs of V(n) 

and δ(n), and the weight in each group are updated in 

parallel. On the contrary, in the batch mode the weights in 

different columns (or rows) have to be updated sequentially 

(Fig. 4c), so that the update time grows linearly with 

crossbar size. Additionally, the batch mode training may 

come with a large area overhead when implemented on-

chip, due to the need of computing and storing intermediate 

results for the weight update [17]. 

 

2 μm

(a) (c)

(d)

(e)

-2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0

-600

-500

-400

-300

-200

-100

0

100

200

300

 

 

C
u

rr
e
n

t 
(

A
)

Voltage (V)

Reset

Set
Form

SiO2/Si

Pt (60 nm)

TiO2-x (30 nm)

Ti (15 nm)

Al2O3 (4 nm)

Ta (5 nm)

Pt (60 nm)

VW-

VR
VW+

Voltage (V)

-2.0   -1.5   -1.0  -0.5   0.0    0.5   1.0   1.5   2.0

300

200

100

0

-100

-200

-300

-400

-500

-600

C
u
rr

e
n
t 

(μ
A

)

-1.5 -1.0 -0.5 0.0 0.5 1.0
0

5

10

15

 

 

C
ou

nt
s

Threshold Voltage (V)

1.7 1.8 1.9 2.0 2.1
0

10

20

30

40

 

 

C
ou

nt
s

Forming voltage (V)

0.3 0.4 0.5 0.6
0

5

10

15

 

 

C
ou

nt
s

Conductance @0.1V (S)

Reset Set

Switching threshold voltage (V)

Forming voltage (V)

Conductance @ 0.1V (μS)

C
o
u
n
t

C
o
u
n
t

C
o
u
n
t

15

10

5

0

40

30

20

10

0

15

10

5

0-1.5     -1.0     -0.5      0.0       0.5      1.0       1.5

1.7         1.8          1.9          2.0         2.1

0.3             0.4              0.5             0.6

(b)

 

Figure 2. Crossbar circuit with integrated Al2O3/TiO2-x resistive switching devices: (a) micrograph of a 12×12-crosspoint crossbar; 
(b) typical quasi-dc I-V curves of memristor forming and switching, with the inset showing the device stack; and histograms of: (c) 

conductances before forming, (d) forming voltages, and (e) effective switching threshold voltages. (The threshold is conditionally 
defined as the point at which device’s resistance is changed by at least 2 kΩ upon application of a 500-μs voltage pulse train with 
a slowly increasing amplitude, starting from high/low conductive state for reset/set transitions.)      
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Figure 3. In-situ training of a single-layer perceptron classifier: (a) flow chart of one epoch for batch- and stochastic-mode training 

algorithms. Gray-shaded boxes show the steps implemented inside the crossbar, while those with solid black borders denote the 
only steps required for performing the feedforward (classification) operation.     
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Figure 4. Physical-level description of the classification experiment: (a) example of operation of classifier using a 10×6 fragment 

of the crossbar; example of weight adjustment for (b) stochastic and (c) batch training for a specific error matrix. Panels (b) and 
(c) show the voltages only for first two steps. The read and write biases were always VR = 0.1 V and VW

± = ±1.3 V, respectively 
(Fig. 2b). 
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Generally, device-to-device variations of the switching 

threshold present a significant challenge for the in-situ 

training, because exponential switching dynamics [6, 11] 

amplifies even slight threshold variations. Additionally, the 

change in conductance depends on the initial conductance 

of the device. In this context, the fact that we have been 

able to achieve successful convergence for both the batch 

and stochastic in-situ training, even despite substantial 

device-to-device variations in switching dynamics, is 

highly encouraging (Fig. 5). The batch-mode training gave 

more stable convergence, while the update dynamics for 

that stochastic training was very close to that in the 

software-implemented network [10]. 
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Figure 5. Results of pattern classification experiments: the 

convergence of network’s output in the process of in-situ 
training for the (a) batch and (b) stochastic training modes; 
(c-e): the training and test images used for (c) batch and (d, 
e) stochastic training experiments. For the batch training, 
one epoch is the input of 30 patterns, while for stochastic 
training, one iteration is the application of one pattern. The 
batch mode (d) training / (e) test images are formed by 
flipping one pixel / two pixels of the “ideal patterns” shown 
with the solid border. 

Simulations Results 
In another part of this work, an accurate, data-verified 

model of adaptation of our memristors [14] was used to 

simulate the performance of pattern classifiers, based on a 

large-scale fully connected MLP and DLCNN, on several 

representative benchmarks [15], using both in-situ and ex-

situ training [16, 17]. Similarly to the experimental results, 

the classification performance was worse for the stochastic 

Manhattan-Rule training (Table 1a). However, a simple 

“variable-amplitude” variation of the training scheme [16, 

17] allows an implementation of the more efficient Delta-

Rule algorithm (Fig. 3b), which dramatically improves the 

stochastic-mode fidelity and achieves state-of-the-art 

performance for the batch training (Table 1a-b). In such 

variable-amplitude scheme, write voltages proportional to 

log[V(n)] and log[δ(n)], of specific polarity, are applied to 

the corresponding lines of the crossbar. Since the change of 

device conductance is roughly exponential in the applied 

voltage, this procedure results in weight update 

proportional to the product of δV, thus implementing the 

Delta Rule directly in the crossbar, without the need of its 

calculation in external hardware. The simulation results 

also show that the in-situ training is inherently robust to 

various network defects (Fig. 6), and that an 8-bit weight 

import at ex-situ training is sufficient to avoid classification 

fidelity degradation [17]. 
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Figure 6. MNIST dataset classification fidelity of a MLP as a 

function of the fraction of stuck-on-open or stuck-on-close 
devices, for several training approaches. 

Discussion and Summary 
We have experimentally demonstrated an artificial neural 

network using memristors integrated into a dense, 

transistor-free crossbar circuit. We believe that this 

demonstration is a significant step toward analog-hardware 

implementation of practical artificial neural networks. The 

simulation of such scaled-up networks, using a 

quantitatively verified model of our memristors, has shown 

that their performance can be competitive to the state-of-

the-art software implementations.  Moreover, recent 

experiments [18] with similar but smaller (so far, discrete) 
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memristors give hope that the metal-oxide memristor 

networks may be scaled down to at least 30-nm devices. 

According to theoretical estimates [2], such networks 

would enable CrossNets with an areal density higher than 

that of the human cerebral cortex, operating at much higher 

speed and with comparable energy efficiency. 
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Table 1. Classification fidelity for (a) 300-hidden-neuron MLP network tested on the MNIST benchmark, and (b) DLCNN, with 

architectures similar to those in [15], tested on three indicated benchmarks. 500 patterns per batch were used for batch training. 

Data
set

Software 
Xbar

in-situ (var. ampl.)
Xbar

ex-situ 2%
Xbar

ex-situ 0.2%
best average best average best average best average

MNIST 0.40 0.47±0.05 0.4 0.48±0.024 0.61 0.89±0.22 0.41 0.42±0.01
GTSRB 1.36 1.53±0.18 1.26 1.56±0.27 1.42 1.56±01 1.46 1.47±0.01

CIFAR10 15.63 15.91±0.2215.67 15.87±0.22 19.77 20.29±0.43 15.5 15.8±0.01

Training
mode

Software
Xbar in-situ Xbar ex-situ

2% importManhattan Rule Var. ampl.
best average best average best average best average

Batch - - 1.98 2.06±0.09 1.47 1.62±0.07 - -

Stochastic 1.57 1.75±0.07 19.26 20.16±1.3 4.06 4.31±0.331.54 1.62±0.04

(b)(a)
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